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Outline 

 Model-driven (model-based) decision support 

 Probabilistic vs Non-Probabilistic Decision Methods 

 Information Gap (info-gap) Decision Theory 

 Information Gap (info-gap) Applications: 
o Monitoring Network Design 

o Contaminant Remediation through Source Control 

 Decision Support for Chromium contamination site @ LANL 

 MADS: Model Analyses & Decision Support 
Open source C/C++ computational framework 
Publications, examples & tutorials @ 
http://mads.lanl.gov 

 ASCEM: Advanced Subsurface Computing for 
Environmental Management; Multi-national lab code 
development project      http://ascemdoe.org (U.S. DOE) 



Model-driven (model-based) decision support 
 
 provides decision makers (DM) with model analysis of decision 

scenarios taking into account site data and knowledge including existing 
uncertainties (uncertainties in conceptualization, model parameters, 
and model predictions) 

 Model analysis: evaluation, ranking and optimization of alternative 
decision scenarios  

 Decision metric(s): e.g. contaminant concentration at a monitoring well 
(environmental risk at a point of compliance) 

 Decision goal(s): e.g. no exceedance of MCL at a compliance point 
and/or increase chance of detecting exceedance of MCL at a monitoring 
well 

 Decision scenarios: combinations of predefined activities to achieve the 
decision goal(s) 



Model-driven decision support (cont.) 

 Activities: 
o data acquisition campaigns 
o field/lab experiments 
o monitoring 
o remediation 

 Activities are analyzed in terms of their impact on decision making 
process (decision uncertainties) 

 Decision uncertainties: uncertainties associated with selection of 
optimal decision scenarios, or performance of specific decision scenarios 

 The Game: Decision maker (DM) vs Nature 

 
 
Important: 

 activities are selected only to reduce decision uncertainties 

 activities are not selected to reduce model or parameter uncertainties 
per se (unconstrained problem). 



Non-Probabilistic Decision Methods 
 

 Lack of knowledge or information precludes decision analyses requiring 
unbiased probabilistic distributions or frequency of occurrence (e.g. Bayesian 
approaches) 

 Severe uncertainties (black swans, dragon kings) can have important impact in 
the decision analyses  

 Non-probabilistic decision methods can be applied to effectively incorporate 
lack of knowledge and severe uncertainties in decision making process 

o Minimax (Maximin) Theory (Wald, 1951)  

o Information Gap Decision Theory (Ben-Haim, 2006) 

 Non-Probabilistic and Probabilistic methods can be coupled (e.g. unknown 
probability distribution parameters can be a subject of non-probabilistic 
analysis, e.g. info-gap) 



Information Gap Decision Theory 
 Nominal (“best”) model prediction intended for decision making 

(based on nominal / “best estimates” model parameter set) 

 Decision metric(s) / performance goal(s) 

 Decision scenarios: vector of alternative decisions d to compare 

 Info-Gap Uncertainty Model (info-gap uncertainty metric = α) 

o energy bound (functional uncertainties: objective function, forcing 
functions, etc.) 

o envelope bound (domain uncertainties: model parameters, calibration 
targets, etc.) 

o nested sets of uncertain model entities ranked by the largest information 
gap α that can be included in the set 

o uncertain model entities: parameters, calibrations, functions, etc. with info-
gap uncertainties 

o e.g. U(α,T) = { T: abs(T-T’) < α } where T’ are the nominal values for 
uncertain model entities 

 Model predictions C(d) constrained by U(α,T)  

Ben-Haim (2006). Info-gap decision theory: decisions under severe uncertainty. Academic Press. 



Information Gap Decision Theory 

 Decision uncertainty is bounded by robustness and opportuness functions  

 Robustness function (immunity to failure of alternate decisions d) 

o defines the maximum horizon of uncertainty 

o R(d) = max{ α: performance goal is satisfied }  

e.g. R(d) = max{ α: ( max C(d) ) < MCL } 

 Opportuness function (immunity to windfall of alternate decisions d) 

o defines the minimum horizon of uncertainty  

o O(d) = min{ α: performance goal is satisfied }   

e.g. O(d) = min{ α: ( min C(d) ) < MCL } 

 Analyses based on Decision Robustness and/or Decision Opportuness: 

o Model selection 

o Remedy selection 

o Performance assessment 

o … 

Ben-Haim (2006). Info-gap decision theory: decisions under severe uncertainty. Academic Press. 
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Bayesian Analysis: Model parameters 
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Info-Gap Analysis: Model parameters (envelope bounds) 
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Info-Gap Analysis: Model parameters (envelope bounds) 
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Info-Gap Analysis: Model parameters (envelope bounds) 
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Info-Gap Analysis: Model parameters (envelope bounds) 
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Info-Gap Analysis: Calibration Targets (envelope bounds) 
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Info-Gap Analysis: Calibration Targets (envelope bounds) 
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Info-Gap Analysis: Decision selection based on robustness 
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Info-Gap Analysis: Decision selection based on robustness 
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Info-Gap Analysis: Decision selection based on robustness 
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Info-Gap Analysis: Decision selection based on robustness 
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Info-Gap Analysis: Decision selection based on robustness 
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Info-Gap Analysis: Decision selection based on robustness 
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Info-Gap Analysis: Model selection based on robustness 
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Info-Gap Analysis: Model selection based on robustness 
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Info-Gap Analysis: Model selection based on robustness 
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Info-Gap Analysis: Model selection based on robustness 
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Info-Gap Analysis: Decision selection based on opportuness 
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Info-Gap Analysis: Decision selection based on opportuness 
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Info-Gap Analysis: Decision selection based on opportuness 
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Info-Gap Analysis: Decision selection based on opportuness 
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Info-Gap Analysis: Decision uncertainty 
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Info-Gap Analysis: Decision uncertainty 
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Info-Gap Analysis: Decision uncertainty 
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Info-Gap Application: Case 1 

Optimization of monitoring network 



Info-Gap Analysis: Network Design 
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Info-Gap Analysis: Network Design 

100 
40 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 
0.5 

0.5 

 Where is the contaminant source? 

MCL = 5 Background = 0.5 



100 
40 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 
0.5 

0.5 

170 

0.5 

0.5 

0.5 

c > 5 (MCL) 

Info-Gap Analysis: Network Design 

MCL = 5 Background = 0.5 



100 
40 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 
0.5 

0.5 

170 

0.5 

0.5 

0.5 

c > 5 (MCL) 

Info-Gap Analysis: Network Design 

MCL = 5 Background = 0.5 



100 
40 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 
0.5 

0.5 

c > 5 (MCL) 

Info-Gap Analysis: Network Design 

MCL = 5 Background = 0.5 



100 
40 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 
0.5 

0.5 

c > 5 (MCL) 

Info-Gap Analysis: Network Design 

MCL = 5 Background = 0.5 



100 
40 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 
0.5 

0.5 

c > 5 (MCL) 

Info-Gap Analysis: Network Design 

MCL = 5 Background = 0.5 



100 
40 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 
0.5 

0.5 

c > 5 (MCL) 

Info-Gap Analysis: Network Design 

MCL = 5 Background = 0.5 



100 
40 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 
0.5 

0.5 

c > 5 (MCL) 

Info-Gap Analysis: Network Design 

MCL = 5 Background = 0.5 



Info-Gap Analysis: Network Design 
 Analytical contaminant flow model: 

o 3D steady-state uniform groundwater flow in unbounded aquifer 
o 3D contaminant source at the top of the aquifer 
o 3D contaminant migration (advection, dispersion) 

 Deterministic model parameters 
o contaminant flux at the contaminant source 
o contaminant arrival time 
o groundwater velocity 
o source thickness (zS = 1 m) 



Info-Gap Analysis: Network Design 
 Unknown model parameters (8) 

o source coordinates (x, y) 
o source size (xS, yS) 
o flow direction 
o aquifer dispersivities (longitudinal, horizontal/vertical transverse)  

 Uncertain observations (calibration targets) (10): 
o concentrations at the monitoring wells 

 Unknown model parameters estimated using inversion 

 Impact of uncertainty in calibration targets on model parameters is 
estimated using info-gap analyses 

 Robustness and opportuness functions associated with predicted 
contaminant concentrations at the proposed new well locations are 
applied for decision analyses 

 Decision question: which of the new proposed well location has the 
highest immunity of failure/windfall to detect concentrations above 
MCL (c > 5 ppm)  
i.e. which well provides the most robust/opportune decision to 
improve the monitoring network 



Info-Gap Analysis: Network Design 
 Calibration targets are highly uncertain (PDF’s cannot be defined) due to: 

o measurement errors 

o uncertain background concentrations 

o uncertain local hydrogeological and geochemical conditions 
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Info-Gap Application: Case 2 

Remediation of contamination in a aquifer through contaminant source control 

Harp & Vesselinov (2011). Contaminant remediation decision analysis using information gap theory. SERRA. 



Info-Gap Analysis: Remediation of contaminant source 

Compliance 
point 

Aquifer 

Vadose 
zone 

transport 

Ground surface Spill 

Surface flow 
Precipitation 
Snow melt ? 

? 
? 

? 

Distance x’ 
C(x’,t) I(t) 

Harp & Vesselinov (2011). Contaminant remediation decision analysis using information gap theory. SERRA. 

Simple contaminant remediation problem: 
 how much contaminant mass needs to be removed to satisfy compliance 

requirement C(x’,t) < MCL 
 lack of probabilistic (frequency of occurrence) information about the contaminant 

mass flux to aquifer I(t) 
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Info-Gap Analysis: Remediation of contaminant source 
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Info-Gap Analysis: Remediation of contaminant source 
Decision robustness defines how much contaminant mass should be removed and still be 
immune to failure considering lack of information about the contaminant mass flux 
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Chromium plume in the regional aquifer at LANL 

GOALS: 
 

 provide model-based decision support related to chromium 
transport in the vadose zone and regional aquifer at LANL 

 apply advanced computationally efficient methods for: 

o parameter estimation (PE) 

o model calibration 

o model-based uncertainty quantification (UQ) 

o risk analysis (RA), and 

o decision support (DS) 

 utilize high-performance computing due to high computational 
demands for model simulations and model analyses 
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Vadose zone monitoring wells 



Chromium plume in the regional aquifer at LANL 

Regional monitoring wells 

Vadose zone monitoring wells 



Chromium plume in the regional aquifer at LANL 

Supply wells 
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Chromium plume in the regional aquifer at LANL 

Supply wells 

Regional monitoring wells 

Vadose zone monitoring wells 

Cr concentrations (~2012) [ppb] 
MCL = 5 ppb 
Background 5-8 ppb 
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2009 model estimate of the plausible contaminant 

concentrations [ppb] along the regional aquifer water table 

 Wells R-62, R-61 and R-50 were not drilled yet 
 Locations of wells R-62, R-61 and R-50 were optimized based on model analyses 
 Observed concentrations at R-62, R-61 and R-50 confirmed model predictions 
 R-43 concentration were at background when the analyses were performed 
 Since 2010, R-43 concentrations are increasing and approaching the model 

predicted concentration 

MCL = 50 ppb 
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MADS is applied to perform all the presented info-gap decision analyses … 



 an open-source high-performance computational framework for analyses and 
decision support based on complex process models 

 advanced adaptive computational techniques: 
o sensitivity analysis (local / global); 
o uncertainty quantification (local / global);  
o optimization / calibration / parameter estimation (local / global); 
o model ranking & selection 
o decision support (GLUE, info-gap) 

 novel algorithms 
o Agent-Based Adaptive Global Uncertainty and Sensitivity (ABAGUS) 

Harp & Vesselinov (2012) An agent-based approach to global uncertainty and sensitivity analysis. Computers & Geosciences. 

o Adaptive hybrid (local/global) optimization strategy (Squads) 
Vesselinov & Harp (2012) Adaptive hybrid optimization strategy for calibration and parameter estimation of physical process 
models. Computers & Geosciences. 

 internal coupling with analytical contaminant transport solvers and test problems 
 external coupling with existing process simulators (ModFlow, TOUGH, FEHM, 

eSTOMP, Amanzi, …) 
 Source code, examples, performance comparisons, and tutorials @ 

http://mads.lanl.gov 



Advanced Subsurface Computing for Environmental Management 

 an open-source interactive decision support system 
(Akuna/Agni) coupled a process simulator (Amanzi) 

 high-performance computing (HPC) 

 data- and model-driven decision support to provide 
standardized, consistent, site-specific and scientifically 
defensible decision analyses across DOE-EM complex  

 Challenge: 
o develop tools to make better use of complex information 

and capabilities to explore problems in greater detail 
o address the most challenging performance assessment and 

waste-disposal problems 

 Impact: 
o provide technical underpinnings for current U.S. DOE-EM 

risk and performance assessments 
o inform strategic data collection for model improvement and 

decision support 
o support scientifically defensible and standardized 

assessments and remedy selections 

Regulatory 
Public Interface 

Reviews 

Decision Making 

Scientific 
Model Setup and Execution 

Model Analyses 

Decision Support 

Programmatic 
 Project Management 

Oversight 

Decision Making 

http://ascemdoe.org 



AMANZI 

AKUNA 

AGNI 

Modules 

Akuna (“no worries”): Graphic User Interface 

(Karen Schuchardt, PNNL) 
• Open Source Eclipse/Java based 
• Incorporates data management, visualization, and model 

development tools 

Agni (“fire”): Simulation controller and Toolset driver 

(George Pau, LBNL, Velimir Vesselinov, LANL) 
• Open Source C++ object oriented 
• Provides coupling between Akuna and Amanzi 
• Performs various model-based analyses (SA, UQ, PE, DS, … ) 

Amanzi (“water”): HPC Flow and Transport Simulator 

(David Moulton, LANL) 
• Open Source C++ object oriented 
• Saturated / unsaturated groundwater flow, … 
• Structured / unstructured / adaptive gridding 
• … 

http://ascemdoe.org 



Model-Analysis Toolsets in Agni 

 

o Sensitivity Analysis (SA) (Stefan Finsterle, Elizabeth Keating)  

o Parameter Estimation (PE) (Stefan Finsterle, LBNL) 

o Uncertainty Quantification (UQ) (Elizabeth Keating, LANL) 

o Risk Assessment (RA) (Wilson McGinn, ORNL) 

o Decision Support (DS) (Velimir Vesselinov, LANL) 

http://ascemdoe.org 



Conclusions and recommendations: 
 

 Both Non-Probabilistic and Probabilistic uncertainties often exist in a decision 
problem  

 Non-Probabilistic and Probabilistic methods should be applied to their 
appropriate uncertainties in the decision analyses 

 In the case of probabilistic methods, definition of prior probability distributions 
for model parameters or calibration targets with unknown/uncertain distribution 
can produce biased predictions and decision analyses 

 In the case of non-probabilistic methods, lack of knowledge and severe 
uncertainties can be captured 

 Non-probabilistic methodologies have been successfully applied for a series of 
synthetic and real-world problems, though less often in hydrology 

o Remediation of unknown contaminant source 
Harp & Vesselinov (2011). Contaminant remediation decision analysis using information gap theory. SERRA 

 MADS provides a computationally efficient framework for decision analyses using 
non-probabilistic and probabilistic methods ( http://mads.lanl.gov ) 

 ASCEM tools are currently actively developed and will become available for 
testing and benchmarking in 2013  ( http://ascemdoe.org ) 




